
PCLD-780 PCLD-880

Screw Terminal Board Industrial Wiring Terminal Board w/Adapter

Features

- Pin to Pin design
- Low-cost universal screw-terminal boards for industrial applications
- 40 terminal points for two 20-pin flat cable connector ports
- Reserved space for signal-conditioning circuits such as low-pass filter, voltage attenuator and current-to-voltage conversion
- Table-top mounting using nylon standoffs. Screws and washers provided for panel or wall mounting

- Screw-clamp terminal-blocks allow easy and reliable connections
- Dimensions: 102 x 114 mm (4.0" x 4.5")

PCLD-880 only

- Supports PC-LabCard™ products with DB-37 connectors
- Industrial-grade terminal blocks (barrier-strip) permit heavy-duty and reliable
- Dimensions: 221 x 115 mm (8.7" x 4.5")

Introduction

The PCLD-780 and PCLD-880 universal screw-terminal boards provide convenient and reliable signal wiring for PC-LabCard™ products with 20-pin flat-cable connectors. The PCLD-880 is also equipped with a DB-37 connector to support PC-LabCard™ products with DB-37 connectors.

The PCLD-780 and PCLD-880 let you install passive components on the special PCB layout to construct your own signal-conditioning circuits.

You can easily construct a low-pass filter, attenuator or current-to-voltage converter by adding resistors and capacitors onto the board's circuit pads.

Applications

- Field wiring for analog and digital I/O channels of PC-LabCard™ products which employ the standard 20-pin flat cable connectors or DB37 connectors (only PCLD-
- Signal conditioning circuits can be implemented as illustrated in the following

a) Straight-through connection (factory setting)

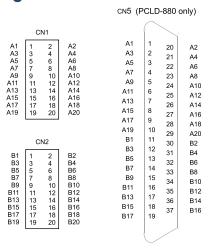
 $RAn = 0\Omega$ iumper

RBn = none Cn = none

b) 1.6 KHz (3dB) low pass filter

$$RAn = 10 \text{ K}\Omega$$

 $RBn = none$
 $Cn = 0.01\Omega F$
 1
 $13dB = \frac{1}{2\pi R \Delta n C n}$


c) 10 : 1 voltage attenuator:

 $RAn = 9 K\Omega$ $RBn = 1 K\Omega$ Cn = noneAttenuation = RAn + RBn (Assume source impedance << 10 K Ω)

d) 4 \sim 20 mA to 1 \sim 5 VDC signal converter:

 $RAn = 0 \Omega (short)$ RBn = 250 Ω (0.1% precision resistor) Cn = none

Pin Assignments

Ordering Information

■ PCLD-780	Screw terminal Board, two 1m 20-pin flat cables (PCL-10120-1)
■ PCLD-880	Industrial Wiring Terminal Board, two 1m 20-pin flat cables (PCL-10120-1), and one PCL-10501 adapter (20-pin analog flat connector to DB37 connector)
PCL-10137-1	DB37 cable assembly, 1m
PCL-10137-2	DB37 cable assembly, 2m
■ PCI -10137-3	DB37 cable assembly 3m